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Abstract

In this paper, an extension of previous analyses of natural circulation in a simple single-phase loop is presented. Assuming more
general correlations for the friction factor and the heat transfer coefficient, an analytical model describing the system is obtained and
a parametric representation of its dynamic behaviour is achieved. On this basis, stability maps can be drawn. A preliminary vali-
dation of the analytical model has been carried out by using an independent program developed for the analysis of stability in
natural circulation loops. The aim of the present work is to provide a simple analytical tool devoted to the stability analysis of a
reference single-phase loop. This model can be applied in a relatively wide range of conditions and regimes to provide benchmark

solutions for thermal-hydraulic codes and related nodalisations.
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1. Introduction

In spite of their apparent simplicity, natural circula-
tion thermosyphon loops appear to be very interesting
systems from both the scientific and the technical points
of view. In fact, they are well known examples of simple
non-linear systems that can exhibit complex (i.e., cha-
otic) behaviour (see, e.g., Bau and Wang, 1992; Hilborn,
2000). Furthermore, natural circulation is extensively
applied in industry and, in particular, in nuclear reac-
tors: in this case, natural circulation is one of the fun-
damental physical mechanisms that the safe operation of
innovative nuclear power plants relies upon. Typically,
passive heat removal during normal operation or during
postulated accident conditions is ensured by natural
circulation. This makes its study and the assessment of
the related system codes interesting topics for both
PWR ! and BWR ? systems. Moreover, natural circu-
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! Pressurized water reactor.

2 Boiling water reactor.
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lation in the core, with no need for motor-driven cir-
culation pumps, is one of the main features of the
ESBWR ? reactor (Challberg et al., 1998), currently
under development.

In the past decades, natural circulation loops have
been the subject of a considerable research effort, fo-
cused on their very interesting stability behaviour. Pio-
neering works in this field have been published by
Welander (1965), who has identified the possibility of
oscillating behaviour in natural circulation loops, and
Keller (1966), who has suggested that, under particular
conditions, oscillations could become periodic. In 1967,
Welander published a further paper (Welander, 1967) in
which he analysed the stability of a very schematic
thermosyphon loop, consisting of two vertical adiabatic
legs joined by two short heated and cooled sections. For
some values of the friction and buoyancy parameters,
growing instabilities were reported to occur, leading
to repeated flow reversals. Experiments conducted
in a toroidal loop by Creveling et al. (1975) have
demonstrated that such a curious behaviour could

3 European simplified boiling water reactor.
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Nomenclature

a, b, ¢ dimensionless constants for the friction factor
law

A channel flow area [m?]

¢y specific heat at constant pressure [J/(kg K)]
pipe diameter [m]
dimensionless exponent for the heat transfer
coefficient law

f Darcy friction factor

g local component along the pipe axis of the
gravity acceleration [m/s?]

H heat transfer coefficient [W/(m? K)]

H steady-state heat transfer coefficient [W/
(m? K)]

L closed loop total length [m]

0 volumetric flow rate [m?/s]

0 steady-state volumetric flow rate [m’/s]

q dimensionless volumetric flow rate

q dimensionless steady-state volumetric flow
rate

90 initial condition for the dimensionless volu-
metric flow rate

dq perturbation of the dimensionless volumetric
flow rate
curvilinear abscissa along the loop axis [m]

s dimensionless curvilinear abscissa along the
loop axis

AS length of the heat source and sink horizontal
pipes [m]

T local cross-section averaged fluid temperature
K]

Ty reference temperature [K], :%

Ty wall temperature [K]

(Tw)heater Wall temperature in the heated section [K]

(Tw)eooter Wall temperature in the cooled section [K]

AT reference  temperature  difference  [K],
— (Bw)heater =(Tw)cooter

t time [s]

Greeks

p isobaric thermal expansion coefficient [K~!]

u dynamic viscosity [kg/(ms)]

=
2

wetted perimeter [m]

density [kg/m?]

heat transfer coefficient law parameter

d%mens@onless time, = m .

dimensionless temperature, ="

steady-state dimensionless temperature

0 perturbation of the dimensionless tempera-

ture

0 initial condition for the dimensionless tem-
perature

o* steady-state dimensionless temperature in the
ascending leg

0~ steady-state dimensionless temperature in the

descending leg
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actually occur in real life equipment. The subsequent
work performed up to the present time has been devoted
to both experimental and theoretical investigation of
these aspects (see, e.g., Greif et al., 1979; Zvirin, 1979;
Zvirin and Greif, 1979; Bau and Torrance, 1981; Hart,
1984, 1985; Chen, 1985; Sen et al., 1985; Misale and
Tagliafico, 1987; Vijayan and Date, 1990, 1992; Velaz-
quez, 1994; Venkat Raj, 1994; Vijayan and Austregesilo,
1994; Vijayan et al., 1995; Rodriguez-Bernal, 1995;
Frogheri et al., 1997; Misale et al., 1999; Vijayan, 2002).

Part of the interesting information coming from this
considerable body of literature is summarised hereafter.

Experiments have been mostly performed in simple
configurations, mainly addressing rectangular loops.
However, even more complex loops have been also
considered, which may be closer to practical applica-
tions (see, e.g., Vijayan and Date, 1990, 1992; Venkat
Raj, 1994). In addition, scaling laws for natural circu-
lation phenomena have been proposed, giving the pos-
sibility to exploit the information on natural circulation
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gathered from small scale facilities in predicting the
behaviour of larger plants (see, e.g., Vijayan and Aus-
tregesilo, 1994; Vijayan, 2002).

The dynamic characteristics of thermosyphon loops
have been also analysed by making use of mathematical
models (see, e.g., Hart, 1984, 1985; Sen et al., 1985; Bau
and Wang, 1992; Velazquez, 1994; Rodriguez-Bernal,
1995). Their behaviour turned out to be complex and
strongly sensitive to the initial conditions, whatever the
simplicity of the geometrical configuration is. In addi-
tion to Welander’s loop, a striking example in this re-
spect is the toroidal thermosyphon loop (Hart, 1984,
1985; Sen et al., 1985), whose dynamics, under appro-
priate boundary conditions, can be described by only
three ordinary differential equations. Nevertheless, the
predicted long term evolution of its relevant phase space
variables is chaotic and closely related to the Lorenz
attractor (Lorenz, 1963).

Analysis of natural circulation by space and time
numerical discretisation of the governing equations is
the only practical choice in complex cases as industrial
plants, since their geometrical and functional details can
hardly be represented using alternative techniques.
Nevertheless, the application of large system codes to
stability analyses must be considered with due caution,
owing to the spurious numerical effects that discretisa-
tion brings about. This has been the subject of previous
studies (Ambrosini and Ferreri, 1998, 2000; Ambrosini,
2001; Ambrosini et al., 2001) aimed at clearly identifying
such effects in the stability maps of simple systems as
predicted by codes and numerical methods in general.
Needless to say, the role of the experiments carried out
in full-scale or downscaled facilities cannot be substi-
tuted by any analytical procedure in the validation of
thermal-hydraulic codes. However, the availability of
benchmark problems that can be solved analytically
gives some additional advantages in testing such codes
on a wide range of geometric parameters and physical
conditions.

In this perspective, the simple Welander’s thermosy-
phon loop (Welander, 1967) turns out to be a very good
reference example of single-phase natural circulation. As
such, it has been taken as the basis for the mentioned
studies on the prediction of stability by different nu-
merical methods (see, e.g., Ambrosini and Ferreri, 1998;
Ambrosini, 2001). Nevertheless, the assumptions origi-
nally adopted for the friction factor and for the heat
transfer coefficient in Welander’s paper (Welander, 1967)
may be not general enough to allow a meaningful
comparison between analytical and numerical predic-
tions obtained by different codes. The restrictions im-
posed on the friction factor and on the heat transfer
coefficient in Welander’s paper, which have been partly
removed in some recent developments (Ambrosini and
Ferreri, 1998) can be further relaxed, reaching a higher
level of generality. This allows obtaining more general

reference solutions for code validation and parametric
studies.

The aim of this paper is to further extend Welander’s
treatment of the problem, including more flexible rela-
tionships for the friction factor and for the heat transfer
coefficient as adopted in codes. According to the ex-
tended model, new stability maps are therefore ob-
tained. Furthermore, the validation of the extended
analytical model via a recently developed transient code
(Ambrosini, 2001) is presented.

2. Description of the problem

A detailed description of the problem characteristics
can be found in Welander (1967) and Ambrosini and
Ferreri (1998). Briefly, looking at Fig. 1(a), the closed
loop of total length L is made by two vertical adiabatic
legs, joined at the top and at the bottom by two short
horizontal pipes of length AS, where heat transfer is
supposed to take place. In particular, heat transfer at
controlled wall temperature is considered in top and
bottom horizontal sections. If the wall temperature in
the bottom section is higher than in the top one, a
natural circulation regime can occur. In steady-state
conditions, the fluid motion is governed by the balance
of the opposite effects of buoyancy (due to the different
fluid densities in the ascending—warm—and in the de-
scending—cold—Ilegs), and friction. The Boussinesq
approximation for the fluid is used, i.e., the fluid is
characterized by a positive thermal expansion coefficient
p but it is still assumed to be incompressible (the density
is insensitive to the weak pressure variations encoun-
tered in the problem).

In the original Welander’s paper (Welander, 1967), a
constant heat transfer coefficient is used in the heated

Heat sink Sink
o] =
@) (b)
g
ot o
S=0 S=1L s=0 Lol s=2
Source

Heat source

Fig. 1. Sketches of the considered physical system.
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and cooled sections and a laminar flow friction factor is
assumed; on the other hand, in the current treatment,
the heat transfer coefficient and the friction factor are
assumed to depend on the flow rate. The following
models are considered for Darcy friction factor f and
heat transfer coefficient H

f=c+ (1)

H=¢0" (0<d< 1), 2)

where Re is the Reynolds number (based on the pipe
diameter D), a, b, ¢, d, £ are appropriate constants and O
is the volumetric flow rate. By choosing the appropriate
values for d and &, correlation (2) gives the constant heat
transfer coefficient case as well as the Colburn or the
Dittus—Boelter correlations. In the two latter cases, it has
to be noted that the coefficient & turns out to be depen-
dent on the fluid temperature in the source and the sink.

For the loop represented in Fig. 1(a), the momentum
equation takes the following form

dg Ic TN 1-b
a +WQ|Q\ +o03 8A2 5 (pD) 0|9
A
2 [ gty - myas, ()

where ¢ is time, p and pu are the density and the dynamic
viscosity, respectively, f is the isobaric thermal expan-
sion coefficient, 4 is the channel flow area, S is the
curvilinear abscissa along the loop axis, I1, is the wetted
perimeter, g(S) is the local component along the pipe
axis of the acceleration due to gravity. 7 = T(S, ) is the
local cross-section averaged fluid temperature and 7, is a
reference temperature for the problem defined by

TO _ (Tw)heater —; (TW)cooler’ (4)

where (Ty)peaer @Nd (7)o are the wall temperatures
(T) in the heated section (source) and in the cooled one
(sink), respectively. Tj can also be considered as a sort of
average temperature at which all the fluid properties, in
the present approximation, are calculated. It has a
constant value as long as the wall temperatures T,
within heat source and sink are kept constant.

The energy equation, neglecting the production term
due to friction and the pressure derivative term, takes
the form

or , gor
ot 40§
0 in the legs,
- pr—ifd (Tw — T) in the heater and the cooler

(5)

with 0 < S <L, t >0 and where ¢, is the fluid specific
heat at constant pressure.

On the basis of Eq. (2), the relation H = éQ between
steady-state heat transfer coefficient and volumetric flow
must hold and the following quantity can be defined

—d
= IO (©6)
Apc,

In similarity with Welander’s treatment, the following
non-dimensional quantities are therefore introduced:

s:S-(%>, (7a)

t

" TIL/kAS)] (76)
T-T,

0="—7" (7d)

where

AT — (Tw)heater ; (TW)cooler. (8)

It is worthwhile to remark that the factors used in
relations (7b) and (7c¢) to make ¢ and Q dimensionless
both depend on the volumetric steady-state flow rate,
whose value is, at the present stage, unknown. This is an
important difference with respect to the original treat-
ment by Welander, where all the quantities entering the
corresponding factor are constant. Nevertheless, since
these definitions are convenient, as it will become clear
later on, we can presently consider Q as an assigned
(constant) quantity.

Moreover, again in similarity with Welander’s treat-
ment, we take the limit for AS — 0 (i.e., for vanishing
sink and source length) while keeping constant the
product (£AS).

Upon introduction of the above dimensionless
quantities, it can be verified that the momentum equa-
tion (3) takes the form

d B 1
vl + odlal " = [ ods, o)
T 0

while the energy equation (5) transforms into
o0 N o0
o 1%

where the following dimensionless parameters have been
introduced

Il cL

=0 (0<s<1, t>0), (10)

7= Teq (not depending on Q), (11a)
_allyLf p Y o
? =64 <pDkAS> (depending on ), (11b)
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_ gPLAT
2(kAS)?

To get Egs. (9) and (10), the anti-symmetry of the
temperature distribution along the loop has been taken
into account (Ambrosini and Ferreri, 1998). This allows
to solve the problem only in the interval (0 < s < 1), see
Fig. 1(b), once the appropriate boundary conditions are
specified, in terms of the dimensionless temperature, in
s =0% and s = 17. Such boundary conditions are ob-
tained, according to Welander’s treatment, by solving
the energy equation in the source and in the sink under
quasi-steady-state conditions (by virtue of the infinites-
imal length of the source and the sink) and assuming an
anti-symmetric temperature distribution along the loop.
These assumptions lead to the following form for the
boundary conditions

000", 7) +0(17,7) = [1 +0(1", 7)]
X (l—effﬂ%") for g >0, >0,
(12a)

(depending on Q). (11c)

6(07,7) +6(17,7) =[-1+4+0(0",7)]

X (l—e_\q\l;"”) for g <0, T>0,
(12b)
where the following dimensionless quantity has been

introduced
. [ M,EAS
pcpé(lfd)
Initial conditions are also necessary to determine the

unique solution describing the transient evolution of the
system; these have the form

4(0) = qo,
0(s,0) = 0p(s) (0<s<1).

In this paper, initial conditions close to the steady-state
ones are chosen and a small perturbation in the flow rate
is included.

d

(13)

3. Steady-state conditions

For the thermosyphon loop under investigation,
steady-state conditions characterized by negative, zero,
or positive flow rate are possible. Due to the symmetry
of the loop and of the boundary conditions, we can re-
strict the analysis, with no loss of generality, to the case
of positive flow rate, discarding the less interesting case
of zero flow. In fact, as pointed out in Welander (1967)
and Ambrosini and Ferreri (1998), the case with nega-
tive flow rate is just the mirror image of the one with
positive flow.

In the following, § and 0 are the dimensionless
steady-state volumetric flow rate and temperature dis-
tribution, respectively.

The momentum equation in the form (9), can be re-
written for the steady-state, taking into account that it is
g >0, as

1
V74 o7 " = oc/ 0ds. (14)
0

The boundary conditions (12), accounting for the sym-
metry of the problem, produce the following results

=—-———£* (steady-state value of 6§ along the

ascending leg), (15a)

(steady-state value of 0 along the

descending leg). (15b)

It is now time to spend some words about the pro-
cedure used to make the volumetric flow rate dimen-
sionless. Simultaneous consideration of relations (6) and
(7¢) leads to the equation

—d
o= MweQ AS (16)
pCp
where O and ¢ are the instantaneous volumetric flow
rate and the dimensionless one, respectively. The pretty
general relation (16) must obviously hold for the steady-
state, giving rise, after proper rearrangements, to

_ WEAS \T7
Qz(’” Sq> . (17)

pCp

The above expression represents just the “recipe” to
make the volumetric flow rate dimensionless. In order to
achieve this result, according to (16), it is therefore
necessary to define the dimensionless steady-state volu-
metric flow rate as in Eq. (17). Since the dimensionless
volumetric flow rate is not simply proportional to the
actual value, it appears to be a rather unusual proce-
dure. On the other hand, relation (17) is a direct con-
sequence of the attempt to keep the greatest level of
similarity with Welander’s formalism and, as it appears
from relation (16), this choice is not particularly limiting
for the developments of the theory.

Relation (17) allows to redefine the dimensionless
parameters o, @, v, all functions of Q (which is regarded,
up to now, as an assigned value), in the form

—bd

¢ =@'q, (18a)

o= o'grd, (18b)
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v:qid, (18C)

Here, the parameters ¢* and o* depend exclusively on
the geometrical and the physical characteristics of the
system and do not contain any unknown quantity. In
fact, they are defined by the expressions

T-a)
. all,L uc,
Q= 6415 | =& — (19a)
pTID(IT,E AS)
- 1 2
T
o —SPLAT | (pe,)T04_ | (19b)
2 [(1.As)Ta

Relations (15) can be rewritten, by virtue of (18c), as

g (1)
(1+¢7)

(steady-state value of 6 along the

ascending leg), (20a)

(steady-state value of 0 along

the descending leg). (20b)

Relations (20) can be used to evaluate the integral at
the right-hand side of Eq. (14). This leads, after some
rearrangements, to the following equation for g (steady-
state volumetric flow rate)

2 _2h)
2 [)Lq“*vﬁ + Gq(]*"):|

@} = (1-¢7), (21)

1+ {j@ﬁ + g9

where the new parameters A and ¢ are defined as

_ 7

A= ot (22a)
_¢

o= (22b)

It turns out that 4 and ¢ are dependent only on the
physical and geometrical features of the loop but not on
its length. This means, looking at Eq. (21), that also the
dimensionless steady-state flow rate results to be inde-
pendent of L.

Eq. (21) allows to calculate the volumetric flow rate.
It can be easily verified that, when the Darcy friction
factor is adopted in place of the Fanning one and when
both ¢ and d in (1) and (2) are set equal to zero, the
coefficients ¢* and o* reduce to the dimensionless pa-
rameters ¢ and o used in Ambrosini and Ferreri (1998),
respectively. With these assumptions, Eq. (21) for the
steady-state reduces to the form there reported.

It is worthwhile to remark that, once the kind of heat
transfer correlation (namely the value of d in (2)) has
been chosen as well as the coefficients in the friction

factor correlation (1), ¢* and o* completely determine
the steady-state solution of the problem.

4. Stability analysis of the system

The stability of the system can be studied by linea-
rising the momentum and the energy equations as well
as the boundary conditions. This technique, also used by
Welander, is based on the application of a first-order
perturbation method. We assume that the dimensionless
volumetric flow rate and temperature can be expressed
as the superposition of a steady-state term plus a small
perturbation depending on dimensionless time, accord-
ing to the following expressions

q(t) =g+ 84(v), (23a)
0(s,7) = 0(s) + 80(s, 7). (23b)

As a consequence of (23), the momentum and the energy
equations, together with the boundary conditions, re-
duce to

% +0-(3q(1)) = oc/o (80(s, 7)) ds, (24a)
0(80(s,7)) , _d(80(s,7)) _

0w T O (24b)
30(0", 1) + md0(17, 1) + ndg(z) = 0, (24c)
where
6 =2yg+ o2 - b)g"™", (25a)
m=c, (25b)
n=21-d)—=" 259

(1 - 67%)52 .
If the time dependence of &g and &0 is assumed to be

given by the complex exponential form
8q(t) = 8q(0)¢™, (26a)

80(s, 7) = 80(s, 0) e, (26b)

and an integration along the ascending leg (0 < s < 1),
with the appropriate boundary conditions, is carried
out, the following characteristic equation in z is obtained

€ —|—m+ o __—o, (27)
-1 z(z40)
where
on
o0=—, 28a
= (28a)
6-2. (28b)
q
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Table 1

859

Comparison between theoretical model and numerical results for different combinations of physical and geometrical conditions

Case a b L [III] Tw,source [OC] Tw.sink [OC] i [WSO'S m74'4 Kil] Gmodel [kg/S]/ Gcode [kg/S]/
stable— stable—
unstable unstable

1 0.316 0.25 5.5 30 20 1078921.9 0.2875/S 0.2777/S

2 0.316 0.25 5.5 30 20 1011489.3 0.2782/U 0.2687/U

3 0.316 0.25 2.5 30 20 876624.1 0.2585/S 0.2444/S

4 0.316 0.25 7.5 30 20 876624.1 0.2585/U 0.2509/U

5 64.0 1.0 60 45 35 636161.7 0.7122/U 0.7170/U

6 64.0 1.0 10 45 35 636161.7 0.7122/S 0.7072/S

Eq. (27) is used to assess the stability of the system. Once
the geometric and the physical parameters are assigned,
the steady-state volumetric flow rate, as well as the pa-
rameters m, & and @, can be computed. Eq. (27) can be
therefore solved with respect to z to determine the dy-
namic behaviour of the system: the stable, unstable or
neutral conditions are given by Re(z;) < 0, Re(z;) > 0,
Re(z)) = 0, respectively, where z; is the solution with the
largest real part.

It is clear that, once the heat transfer law (2) and the
friction factor correlation (1) are defined and all the
physical and geometrical parameters are specified, o*
and ¢* completely determine the dynamic behaviour of
the system.

5. Numerical experiments and results

A validation of the model has been carried out in
comparison with the results of a numerical transient
code purposely developed for the one-dimensional
analysis of single-phase thermosyphon loops with gen-
eral enough lay-out (Ambrosini, 2001; Ambrosini et al.,
2001). Stability has been assessed by the code on the
basis of the observed transient behaviour after a small
perturbation of the steady-state conditions.

The main characteristics of the program and of its
models are shortly summarised.

e The natural circulation loop is assumed to consist of
different sections made of circular pipes having uni-
form diameter and structure thickness. Each section
is axially discretised with uniformly distributed
nodes.

e The one-dimensional energy balance equation is
solved in the control volumes, by making use of a
classical first-order upwind explicit method or, as an
alternative, of a low diffusion method devised on
the basis of a second order upwind explicit scheme.
For better accuracy, the latter numerical scheme has
always been adopted in the present work.

e The momentum equation is written for an incom-
pressible fluid in integral form and discretised in time
by a semi-implicit technique. The Boussinesq assump-
tion is retained for evaluating buoyancy.

e Walls are thermally coupled with the internal fluid in
each node and with appropriate convective boundary
conditions on the outer surface. The internal heat
transfer coefficient may be calculated by an appropri-
ate constitutive relationship or assigned as an input.
In the present application, anyway, heat structures
play a minor role as pipes are everywhere considered
adiabatic, except in the pointwise heat source and
sink.

o A default friction relationship is available in the code.
It is anyway possible to specify a user-defined friction
law. This possibility has been used in the analysis per-
formed for the present calculation cases.

o Steady-state conditions are evaluated by an algorithm
involving two nested iteration loops on the flow rate
and the average fluid temperature, with allowance for
arbitrary distributions of heating and cooling devices.

The value of the steady-state volumetric flow and the
stable or unstable character of the dynamic evolution, as
predicted by the two methods (i.e., analytical and nu-
merical), are compared. The heat transfer coefficient in
the heat source and in the sink, as well as the friction
factor, are chosen to be the same in the analytical model
and in the numerical program.

After testing the reliability of the analytical model,
the theoretical stability map for a specific example has
been compared with the theoretical stability map for the
case of constant heat transfer coefficient, the friction
factor correlation being the same in the two cases.

5.1. Analytical model validation

The results obtained for some cases of interest are
reported in Table 1. For all the cases considered, it has
been assumed ¢ =0,d = 0.8, AS=0.1m,D=0.1m. In
Table 2, the characteristics of the nodalisations adopted

Table 2
Nodalisations adopted in numerical calculations for the cases 1-6 of
Table 1

Case Volumes per leg Volumes in source
and sink

1-4 25 1

5-6 50 1
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in the numerical code simulations for the different cases merical code for the specific combinations used in cases
are given. The loop flow rate transient evolution calcu- 1-4.

lated using the numerical code in cases 1-6 are shown in The results reported in Table 1 reveal a reasonable
Figs. 2-4. Fig. 5 shows the theoretical stability map agreement between the analytical model and the nu-
together with the working points analysed via the nu- merical program as far as the steady-state flow rate and

0. 280
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Fig. 2. Loop flow rate transient calculated via the numerical code: case 1 and case 2.
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Fig. 6. Comparison of the theoretical stability maps for the cases d = 0.0, ¢ = 0.0, 5 = 0.25 and d = 0.8, ¢ = 0.0, b = 0.25 (positive flow steady-state

conditions).

the assessment of the system stability are concerned,
even when the margin of stability or instability is rela-
tively small. The small differences in the steady-state
mass flow rate between the analytical model and the
reference program can be ascribed to the different nature
of the models (analytical and numerical) and to the
schematisation of the source and the sink with nodes
having finite length.

5.2. Comparison of the stability maps for different heat
transfer correlations

The stability map for the case with d = 0.8, b = 0.25,
¢ = 0.0 is reported in Fig. 6 in comparison with the case
with d = 0.0 (i.e., constant heat transfer coefficient case),
b =0.25, ¢ = 0.0. The parameter o* is reported in log-
arithmic scale along the abscissa. Looking at the rep-
resentation of the stability map in terms of «* and ¢*, it

appears from the example that the neutral stability line
for the case of variable heat transfer coefficient is dis-
placed in the zone of higher o* and ¢* values with re-
spect to the case with d =0.0 and has a different
appearance, even if it maintains the characteristic
“nose” shape.

6. Conclusions

In the present paper, an extension of the analysis
proposed by Welander (1967) for a simple single-phase
thermosyphon loop is carried out by including more
general friction factor and heat transfer coefficient cor-
relations. A five-parameters description of the stability
of the system, that is conveniently reduced to a two-
parameters representation (namely o* and ¢*), is dem-
onstrated to be possible and an analytical model is
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correspondingly obtained. Such a model has been vali-
dated with results provided by a completely independent
numerical code incorporating the same friction factor
and heat transfer coefficient correlations used in the
analytical model in each of the considered cases.

The analytical model has then been used to compare
the case of heat transfer coefficient calculated according
to a Colburn-type correlation with the case of constant
heat transfer coefficient assumed in the original We-
lander’s treatment. This comparison reveals that the
neutral stability curve changes in shape and position in
the o*—¢* plane. In particular, for the variable heat
transfer coefficient case, the onset of instability occurs at
higher values for o* and ¢*. However, it has to be
considered that for assigned physical and geometrical
conditions, a change in the form of the heat transfer
coefficient (namely of the exponent d) will involve
modifications in the values of o* and ¢*.

Although the presented model is quite general, the
heat transfer correlation (2), mainly used in the presence
of forced convection, is obviously not able to cover all
the cases of practical interest. As known, both friction
and heat transfer may be different in natural circulation
conditions with respect to forced flow and specific clo-
sure laws should be adopted in this case. Further de-
velopments, i.e., consideration of other forms of the heat
transfer coefficient, would therefore represent the logical
step to extend the applicability of the present work. Also
the extension to friction factor forms different from (1)
could be interesting, as already shown in Ambrosini and
Ferreri (2000).

However, in these developments a compromise must
be reached between realism and simplicity of the para-
metric representation. In fact, for practical purposes it is
important to attain simple models, anyway able to
represent the relevant features of the considered dy-
namic system. This is what made Welander’s problem so
relevant for a whole class of natural circulation loops
and motivated the extension of its range of application
proposed in the present work.
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