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Abstract

In this paper, an extension of previous analyses of natural circulation in a simple single-phase loop is presented. Assuming more

general correlations for the friction factor and the heat transfer coefficient, an analytical model describing the system is obtained and

a parametric representation of its dynamic behaviour is achieved. On this basis, stability maps can be drawn. A preliminary vali-

dation of the analytical model has been carried out by using an independent program developed for the analysis of stability in

natural circulation loops. The aim of the present work is to provide a simple analytical tool devoted to the stability analysis of a

reference single-phase loop. This model can be applied in a relatively wide range of conditions and regimes to provide benchmark

solutions for thermal-hydraulic codes and related nodalisations.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In spite of their apparent simplicity, natural circula-

tion thermosyphon loops appear to be very interesting

systems from both the scientific and the technical points
of view. In fact, they are well known examples of simple

non-linear systems that can exhibit complex (i.e., cha-

otic) behaviour (see, e.g., Bau and Wang, 1992; Hilborn,

2000). Furthermore, natural circulation is extensively

applied in industry and, in particular, in nuclear reac-

tors: in this case, natural circulation is one of the fun-

damental physical mechanisms that the safe operation of

innovative nuclear power plants relies upon. Typically,
passive heat removal during normal operation or during

postulated accident conditions is ensured by natural

circulation. This makes its study and the assessment of

the related system codes interesting topics for both

PWR 1 and BWR 2 systems. Moreover, natural circu-
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lation in the core, with no need for motor-driven cir-

culation pumps, is one of the main features of the

ESBWR 3 reactor (Challberg et al., 1998), currently

under development.

In the past decades, natural circulation loops have
been the subject of a considerable research effort, fo-

cused on their very interesting stability behaviour. Pio-

neering works in this field have been published by

Welander (1965), who has identified the possibility of

oscillating behaviour in natural circulation loops, and

Keller (1966), who has suggested that, under particular

conditions, oscillations could become periodic. In 1967,

Welander published a further paper (Welander, 1967) in
which he analysed the stability of a very schematic

thermosyphon loop, consisting of two vertical adiabatic

legs joined by two short heated and cooled sections. For

some values of the friction and buoyancy parameters,

growing instabilities were reported to occur, leading

to repeated flow reversals. Experiments conducted

in a toroidal loop by Creveling et al. (1975) have

demonstrated that such a curious behaviour could
3 European simplified boiling water reactor.
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Nomenclature

a, b, c dimensionless constants for the friction factor

law

A channel flow area [m2]

cp specific heat at constant pressure [J/(kgK)]

D pipe diameter [m]

d dimensionless exponent for the heat transfer

coefficient law

f Darcy friction factor
g local component along the pipe axis of the

gravity acceleration [m/s2]

H heat transfer coefficient [W/(m2 K)]

H steady-state heat transfer coefficient [W/

(m2 K)]

L closed loop total length [m]

Q volumetric flow rate [m3/s]

Q steady-state volumetric flow rate [m3/s]
q dimensionless volumetric flow rate

q dimensionless steady-state volumetric flow

rate

q0 initial condition for the dimensionless volu-

metric flow rate

dq perturbation of the dimensionless volumetric

flow rate

S curvilinear abscissa along the loop axis [m]
s dimensionless curvilinear abscissa along the

loop axis

DS length of the heat source and sink horizontal

pipes [m]

T local cross-section averaged fluid temperature

[K]

T0 reference temperature [K], ¼ ðTwÞheaterþðTwÞcooler
2

Tw wall temperature [K]
ðTwÞheater wall temperature in the heated section [K]

ðTwÞcooler wall temperature in the cooled section [K]

DT reference temperature difference [K],

¼ ðTwÞheater�ðTwÞcooler
2

t time [s]

Greeks

b isobaric thermal expansion coefficient [K�1]

l dynamic viscosity [kg/(m s)]

Pw wetted perimeter [m]

q density [kg/m3]

n heat transfer coefficient law parameter

s dimensionless time, ¼ t
½L=ð2k DSÞ�

h dimensionless temperature, ¼ T�T0
DT

h steady-state dimensionless temperature

dh perturbation of the dimensionless tempera-

ture
h0 initial condition for the dimensionless tem-

perature

hþ steady-state dimensionless temperature in the

ascending leg

h� steady-state dimensionless temperature in the

descending leg
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actually occur in real life equipment. The subsequent

work performed up to the present time has been devoted

to both experimental and theoretical investigation of

these aspects (see, e.g., Greif et al., 1979; Zvirin, 1979;

Zvirin and Greif, 1979; Bau and Torrance, 1981; Hart,

1984, 1985; Chen, 1985; Sen et al., 1985; Misale and

Tagliafico, 1987; Vijayan and Date, 1990, 1992; Velaz-

quez, 1994; Venkat Raj, 1994; Vijayan and Austregesilo,
1994; Vijayan et al., 1995; Rodriguez-Bernal, 1995;

Frogheri et al., 1997; Misale et al., 1999; Vijayan, 2002).
Part of the interesting information coming from this

considerable body of literature is summarised hereafter.

Experiments have been mostly performed in simple

configurations, mainly addressing rectangular loops.

However, even more complex loops have been also

considered, which may be closer to practical applica-

tions (see, e.g., Vijayan and Date, 1990, 1992; Venkat

Raj, 1994). In addition, scaling laws for natural circu-
lation phenomena have been proposed, giving the pos-

sibility to exploit the information on natural circulation



Heat sink

Heat source

g

Source

 s = 2 s = 0

 s = 1

s

(a)

S

 S = L /2

∆ S

(b)

Sink

 S = 0  S = L

Fig. 1. Sketches of the considered physical system.
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gathered from small scale facilities in predicting the

behaviour of larger plants (see, e.g., Vijayan and Aus-

tregesilo, 1994; Vijayan, 2002).

The dynamic characteristics of thermosyphon loops
have been also analysed by making use of mathematical

models (see, e.g., Hart, 1984, 1985; Sen et al., 1985; Bau

and Wang, 1992; Velazquez, 1994; Rodriguez-Bernal,

1995). Their behaviour turned out to be complex and

strongly sensitive to the initial conditions, whatever the

simplicity of the geometrical configuration is. In addi-

tion to Welander’s loop, a striking example in this re-

spect is the toroidal thermosyphon loop (Hart, 1984,
1985; Sen et al., 1985), whose dynamics, under appro-

priate boundary conditions, can be described by only

three ordinary differential equations. Nevertheless, the

predicted long term evolution of its relevant phase space

variables is chaotic and closely related to the Lorenz

attractor (Lorenz, 1963).

Analysis of natural circulation by space and time

numerical discretisation of the governing equations is
the only practical choice in complex cases as industrial

plants, since their geometrical and functional details can

hardly be represented using alternative techniques.

Nevertheless, the application of large system codes to

stability analyses must be considered with due caution,

owing to the spurious numerical effects that discretisa-

tion brings about. This has been the subject of previous

studies (Ambrosini and Ferreri, 1998, 2000; Ambrosini,
2001; Ambrosini et al., 2001) aimed at clearly identifying

such effects in the stability maps of simple systems as

predicted by codes and numerical methods in general.

Needless to say, the role of the experiments carried out

in full-scale or downscaled facilities cannot be substi-

tuted by any analytical procedure in the validation of

thermal-hydraulic codes. However, the availability of

benchmark problems that can be solved analytically
gives some additional advantages in testing such codes

on a wide range of geometric parameters and physical

conditions.

In this perspective, the simple Welander’s thermosy-

phon loop (Welander, 1967) turns out to be a very good

reference example of single-phase natural circulation. As

such, it has been taken as the basis for the mentioned

studies on the prediction of stability by different nu-
merical methods (see, e.g., Ambrosini and Ferreri, 1998;

Ambrosini, 2001). Nevertheless, the assumptions origi-

nally adopted for the friction factor and for the heat

transfer coefficient inWelander’s paper (Welander, 1967)

may be not general enough to allow a meaningful

comparison between analytical and numerical predic-

tions obtained by different codes. The restrictions im-

posed on the friction factor and on the heat transfer
coefficient in Welander’s paper, which have been partly

removed in some recent developments (Ambrosini and

Ferreri, 1998) can be further relaxed, reaching a higher

level of generality. This allows obtaining more general
reference solutions for code validation and parametric

studies.

The aim of this paper is to further extend Welander’s

treatment of the problem, including more flexible rela-
tionships for the friction factor and for the heat transfer

coefficient as adopted in codes. According to the ex-

tended model, new stability maps are therefore ob-

tained. Furthermore, the validation of the extended

analytical model via a recently developed transient code

(Ambrosini, 2001) is presented.
2. Description of the problem

A detailed description of the problem characteristics

can be found in Welander (1967) and Ambrosini and

Ferreri (1998). Briefly, looking at Fig. 1(a), the closed

loop of total length L is made by two vertical adiabatic

legs, joined at the top and at the bottom by two short

horizontal pipes of length DS, where heat transfer is
supposed to take place. In particular, heat transfer at

controlled wall temperature is considered in top and

bottom horizontal sections. If the wall temperature in

the bottom section is higher than in the top one, a

natural circulation regime can occur. In steady-state

conditions, the fluid motion is governed by the balance

of the opposite effects of buoyancy (due to the different

fluid densities in the ascending––warm––and in the de-
scending––cold––legs), and friction. The Boussinesq

approximation for the fluid is used, i.e., the fluid is

characterized by a positive thermal expansion coefficient

b but it is still assumed to be incompressible (the density

is insensitive to the weak pressure variations encoun-

tered in the problem).

In the original Welander’s paper (Welander, 1967), a

constant heat transfer coefficient is used in the heated
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and cooled sections and a laminar flow friction factor is

assumed; on the other hand, in the current treatment,

the heat transfer coefficient and the friction factor are

assumed to depend on the flow rate. The following
models are considered for Darcy friction factor f and

heat transfer coefficient H

f ¼ cþ a

ðReÞb
; ð1Þ

H ¼ nQd ð06 d < 1Þ; ð2Þ

where Re is the Reynolds number (based on the pipe

diameter D), a, b, c, d, n are appropriate constants and Q
is the volumetric flow rate. By choosing the appropriate

values for d and n, correlation (2) gives the constant heat
transfer coefficient case as well as the Colburn or the

Dittus–Boelter correlations. In the two latter cases, it has

to be noted that the coefficient n turns out to be depen-

dent on the fluid temperature in the source and the sink.

For the loop represented in Fig. 1(a), the momentum

equation takes the following form

dQ
dt

þPwc
8A2

QjQj þ Pwa
8A2�b

l
qD

� �b

QjQj1�b

¼ bA
L

Z L

0

gðSÞðT � T0ÞdS; ð3Þ

where t is time, q and l are the density and the dynamic

viscosity, respectively, b is the isobaric thermal expan-

sion coefficient, A is the channel flow area, S is the

curvilinear abscissa along the loop axis, Pw is the wetted
perimeter, gðSÞ is the local component along the pipe

axis of the acceleration due to gravity. T ¼ T ðS; tÞ is the
local cross-section averaged fluid temperature and T0 is a
reference temperature for the problem defined by

T0 ¼
ðTwÞheater þ ðTwÞcooler

2
; ð4Þ

where ðTwÞheater and ðTwÞcooler are the wall temperatures

(Tw) in the heated section (source) and in the cooled one

(sink), respectively. T0 can also be considered as a sort of

average temperature at which all the fluid properties, in

the present approximation, are calculated. It has a
constant value as long as the wall temperatures Tw
within heat source and sink are kept constant.

The energy equation, neglecting the production term

due to friction and the pressure derivative term, takes

the form

oT
ot

þ Q
A

oT
oS

¼
0 in the legs;
PwnQd

Aqcp
ðTw � T Þ in the heater and the cooler

(
ð5Þ
with 06 S6L, t > 0 and where cp is the fluid specific

heat at constant pressure.

On the basis of Eq. (2), the relation H ¼ nQ
d
between

steady-state heat transfer coefficient and volumetric flow
must hold and the following quantity can be defined

k ¼ PwnQ
d

Aqcp
: ð6Þ

In similarity with Welander’s treatment, the following

non-dimensional quantities are therefore introduced:

s ¼ S � 2

L

� �
; ð7aÞ

s ¼ t
½L=ð2kDSÞ� ; ð7bÞ

q ¼ Q
kADS

; ð7cÞ

h ¼ T � T0
DT

; ð7dÞ

where

DT ¼ ðTwÞheater � ðTwÞcooler
2

: ð8Þ

It is worthwhile to remark that the factors used in

relations (7b) and (7c) to make t and Q dimensionless

both depend on the volumetric steady-state flow rate,

whose value is, at the present stage, unknown. This is an

important difference with respect to the original treat-

ment by Welander, where all the quantities entering the

corresponding factor are constant. Nevertheless, since
these definitions are convenient, as it will become clear

later on, we can presently consider Q as an assigned

(constant) quantity.

Moreover, again in similarity with Welander’s treat-

ment, we take the limit for DS ! 0 (i.e., for vanishing

sink and source length) while keeping constant the

product (nDS).
Upon introduction of the above dimensionless

quantities, it can be verified that the momentum equa-

tion (3) takes the form

dq
ds

þ cqjqj þ uqjqj1�b ¼ a
Z 1

0

hds; ð9Þ

while the energy equation (5) transforms into

oh
os

þ q
oh
os

¼ 0 ð0 < s < 1; s > 0Þ; ð10Þ

where the following dimensionless parameters have been

introduced

c ¼ PwcL
16A

ðnot depending on QÞ; ð11aÞ

u ¼ aPwL
16A

l
qDkDS

� �b

ðdepending on QÞ; ð11bÞ
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a ¼ gbLDT

2ðkDSÞ2
ðdepending on QÞ: ð11cÞ

To get Eqs. (9) and (10), the anti-symmetry of the

temperature distribution along the loop has been taken

into account (Ambrosini and Ferreri, 1998). This allows

to solve the problem only in the interval (0 < s < 1), see
Fig. 1(b), once the appropriate boundary conditions are

specified, in terms of the dimensionless temperature, in

s ¼ 0þ and s ¼ 1�. Such boundary conditions are ob-

tained, according to Welander’s treatment, by solving

the energy equation in the source and in the sink under

quasi-steady-state conditions (by virtue of the infinites-

imal length of the source and the sink) and assuming an

anti-symmetric temperature distribution along the loop.
These assumptions lead to the following form for the

boundary conditions

hð0þ; sÞ þ hð1�; sÞ ¼ ½1þ hð1�; sÞ�

� 1
�

� e
� m

q1�d

�
for q > 0; s > 0;

ð12aÞ

hð0þ; sÞ þ hð1�; sÞ ¼ ½�1þ hð0þ; sÞ�

� 1
�

� e
� m

jqj1�d
�

for q < 0; s > 0;

ð12bÞ

where the following dimensionless quantity has been

introduced

m ¼ PwnDS

qcpQ
ð1�dÞ

" #d

: ð13Þ

Initial conditions are also necessary to determine the

unique solution describing the transient evolution of the
system; these have the form

qð0Þ ¼ q0;

hðs; 0Þ ¼ h0ðsÞ ð0 < s < 1Þ:
In this paper, initial conditions close to the steady-state

ones are chosen and a small perturbation in the flow rate

is included.
3. Steady-state conditions

For the thermosyphon loop under investigation,
steady-state conditions characterized by negative, zero,

or positive flow rate are possible. Due to the symmetry

of the loop and of the boundary conditions, we can re-

strict the analysis, with no loss of generality, to the case

of positive flow rate, discarding the less interesting case

of zero flow. In fact, as pointed out in Welander (1967)

and Ambrosini and Ferreri (1998), the case with nega-

tive flow rate is just the mirror image of the one with
positive flow.
In the following, q and h are the dimensionless

steady-state volumetric flow rate and temperature dis-

tribution, respectively.

The momentum equation in the form (9), can be re-
written for the steady-state, taking into account that it is

q > 0, as

cq2 þ uq2�b ¼ a
Z 1

0

hds: ð14Þ

The boundary conditions (12), accounting for the sym-

metry of the problem, produce the following results

hþ ¼
1� e

� m

q1�d
� �
1þ e

� m

q1�d
� � ðsteady-state value of h along the

ascending legÞ; ð15aÞ

h� ¼ �
1� e

� m

q1�d
� �
1þ e

� m

q1�d
� � ðsteady-state value of h along the

descending legÞ: ð15bÞ

It is now time to spend some words about the pro-

cedure used to make the volumetric flow rate dimen-

sionless. Simultaneous consideration of relations (6) and

(7c) leads to the equation

Q ¼ PwnQ
d
DS

qcp
q; ð16Þ

where Q and q are the instantaneous volumetric flow

rate and the dimensionless one, respectively. The pretty

general relation (16) must obviously hold for the steady-
state, giving rise, after proper rearrangements, to

Q ¼ PwnDS
qcp

q
� � 1

1�d

: ð17Þ

The above expression represents just the ‘‘recipe’’ to
make the volumetric flow rate dimensionless. In order to

achieve this result, according to (16), it is therefore

necessary to define the dimensionless steady-state volu-

metric flow rate as in Eq. (17). Since the dimensionless

volumetric flow rate is not simply proportional to the

actual value, it appears to be a rather unusual proce-

dure. On the other hand, relation (17) is a direct con-

sequence of the attempt to keep the greatest level of
similarity with Welander’s formalism and, as it appears

from relation (16), this choice is not particularly limiting

for the developments of the theory.

Relation (17) allows to redefine the dimensionless

parameters a, u, m, all functions of Q (which is regarded,

up to now, as an assigned value), in the form

u ¼ u��qq
�bd
1�d ; ð18aÞ

a ¼ a��qq
�2d
1�d ; ð18bÞ
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m ¼ q�d : ð18cÞ

Here, the parameters u� and a� depend exclusively on

the geometrical and the physical characteristics of the

system and do not contain any unknown quantity. In

fact, they are defined by the expressions

u� ¼ aPwL
16A1�b

lc
1

ð1�dÞ
p

q
�d

ð1�dÞDðPwnDSÞ
1

ð1�dÞ

24 35b

; ð19aÞ

a� ¼ gbLDT
2

ðqcpÞ
1

ð1�dÞA

ðPwnDSÞ
1

ð1�dÞ

" #2

: ð19bÞ

Relations (15) can be rewritten, by virtue of (18c), as

hþ ¼
1� e

�1
q

� �
1þ e

�1
q

� � ðsteady-state value of h along the

ascending legÞ; ð20aÞ

h� ¼ �
1� e

�1
q

� �
1þ e

�1
q

� � ðsteady-state value of h along

the descending legÞ: ð20bÞ

Relations (20) can be used to evaluate the integral at
the right-hand side of Eq. (14). This leads, after some

rearrangements, to the following equation for q (steady-

state volumetric flow rate)

2 kq
2

ð1�dÞ þ rq
ð2�bÞ
ð1�dÞ

h i
1þ kq

2
ð1�dÞ þ rq

ð2�bÞ
ð1�dÞ

h i ¼ 1
�

� e
�1

q

�
; ð21Þ

where the new parameters k and r are defined as

k ¼ c
a�

; ð22aÞ

r ¼ u�

a�
: ð22bÞ

It turns out that k and r are dependent only on the

physical and geometrical features of the loop but not on

its length. This means, looking at Eq. (21), that also the

dimensionless steady-state flow rate results to be inde-

pendent of L.
Eq. (21) allows to calculate the volumetric flow rate.

It can be easily verified that, when the Darcy friction

factor is adopted in place of the Fanning one and when

both c and d in (1) and (2) are set equal to zero, the

coefficients u� and a� reduce to the dimensionless pa-

rameters e and a used in Ambrosini and Ferreri (1998),

respectively. With these assumptions, Eq. (21) for the

steady-state reduces to the form there reported.

It is worthwhile to remark that, once the kind of heat
transfer correlation (namely the value of d in (2)) has

been chosen as well as the coefficients in the friction
factor correlation (1), u� and a� completely determine

the steady-state solution of the problem.
4. Stability analysis of the system

The stability of the system can be studied by linea-

rising the momentum and the energy equations as well

as the boundary conditions. This technique, also used by

Welander, is based on the application of a first-order

perturbation method. We assume that the dimensionless

volumetric flow rate and temperature can be expressed
as the superposition of a steady-state term plus a small

perturbation depending on dimensionless time, accord-

ing to the following expressions

qðsÞ ¼ qþ dqðsÞ; ð23aÞ

hðs; sÞ ¼ hðsÞ þ dhðs; sÞ: ð23bÞ

As a consequence of (23), the momentum and the energy

equations, together with the boundary conditions, re-

duce to

dðdqðsÞÞ
ds

þH � ðdqðsÞÞ ¼ a
Z 1

0

ðdhðs; sÞÞds; ð24aÞ

oðdhðs; sÞÞ
os

þ q
oðdhðs; sÞÞ

os
¼ 0; ð24bÞ

dhð0þ; sÞ þ mdhð1�; sÞ þ ndqðsÞ ¼ 0; ð24cÞ

where

H ¼ 2cqþ uð2� bÞqð1�bÞ; ð25aÞ

m ¼ e
�1

q; ð25bÞ

n ¼ 2ð1� dÞ e
�1

q

1þ e
�1

q

� �
q2

: ð25cÞ

If the time dependence of dq and dh is assumed to be

given by the complex exponential form

dqðsÞ ¼ dqð0Þezs; ð26aÞ

dhðs; sÞ ¼ dhðs; 0Þezs; ð26bÞ
and an integration along the ascending leg (0 < s < 1),
with the appropriate boundary conditions, is carried

out, the following characteristic equation in z is obtained

ez þ m
ez � 1

þ ~aa

zðzþ eHHÞ
¼ 0; ð27Þ

where

~aa ¼ an
q
; ð28aÞ

eHH ¼ H
q
: ð28bÞ



Table 1

Comparison between theoretical model and numerical results for different combinations of physical and geometrical conditions

Case a b L [m] Tw;source [�C] Tw;sink [�C] n [W s0:8 m�4:4 K�1] Gmodel [kg/s]/

stable–

unstable

Gcode [kg/s]/

stable–

unstable

1 0.316 0.25 5.5 30 20 1078921.9 0.2875/S 0.2777/S

2 0.316 0.25 5.5 30 20 1011489.3 0.2782/U 0.2687/U

3 0.316 0.25 2.5 30 20 876624.1 0.2585/S 0.2444/S

4 0.316 0.25 7.5 30 20 876624.1 0.2585/U 0.2509/U

5 64.0 1.0 60 45 35 636161.7 0.7122/U 0.7170/U

6 64.0 1.0 10 45 35 636161.7 0.7122/S 0.7072/S
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Eq. (27) is used to assess the stability of the system. Once

the geometric and the physical parameters are assigned,

the steady-state volumetric flow rate, as well as the pa-

rameters m, ~aa and eHH, can be computed. Eq. (27) can be

therefore solved with respect to z to determine the dy-

namic behaviour of the system: the stable, unstable or
neutral conditions are given by Reðz1Þ < 0, Reðz1Þ > 0,

Reðz1Þ ¼ 0, respectively, where z1 is the solution with the

largest real part.

It is clear that, once the heat transfer law (2) and the

friction factor correlation (1) are defined and all the

physical and geometrical parameters are specified, a�

and u� completely determine the dynamic behaviour of

the system.
Table 2

Nodalisations adopted in numerical calculations for the cases 1–6 of

Table 1

Case Volumes per leg Volumes in source

and sink

1–4 25 1

5–6 50 1
5. Numerical experiments and results

A validation of the model has been carried out in

comparison with the results of a numerical transient

code purposely developed for the one-dimensional

analysis of single-phase thermosyphon loops with gen-
eral enough lay-out (Ambrosini, 2001; Ambrosini et al.,

2001). Stability has been assessed by the code on the

basis of the observed transient behaviour after a small

perturbation of the steady-state conditions.

The main characteristics of the program and of its

models are shortly summarised.

• The natural circulation loop is assumed to consist of
different sections made of circular pipes having uni-

form diameter and structure thickness. Each section

is axially discretised with uniformly distributed

nodes.

• The one-dimensional energy balance equation is

solved in the control volumes, by making use of a

classical first-order upwind explicit method or, as an

alternative, of a low diffusion method devised on
the basis of a second order upwind explicit scheme.

For better accuracy, the latter numerical scheme has

always been adopted in the present work.

• The momentum equation is written for an incom-

pressible fluid in integral form and discretised in time

by a semi-implicit technique. The Boussinesq assump-

tion is retained for evaluating buoyancy.
• Walls are thermally coupled with the internal fluid in

each node and with appropriate convective boundary

conditions on the outer surface. The internal heat

transfer coefficient may be calculated by an appropri-

ate constitutive relationship or assigned as an input.

In the present application, anyway, heat structures
play a minor role as pipes are everywhere considered

adiabatic, except in the pointwise heat source and

sink.

• A default friction relationship is available in the code.

It is anyway possible to specify a user-defined friction

law. This possibility has been used in the analysis per-

formed for the present calculation cases.

• Steady-state conditions are evaluated by an algorithm
involving two nested iteration loops on the flow rate

and the average fluid temperature, with allowance for

arbitrary distributions of heating and cooling devices.

The value of the steady-state volumetric flow and the

stable or unstable character of the dynamic evolution, as

predicted by the two methods (i.e., analytical and nu-

merical), are compared. The heat transfer coefficient in
the heat source and in the sink, as well as the friction

factor, are chosen to be the same in the analytical model

and in the numerical program.

After testing the reliability of the analytical model,

the theoretical stability map for a specific example has

been compared with the theoretical stability map for the

case of constant heat transfer coefficient, the friction

factor correlation being the same in the two cases.

5.1. Analytical model validation

The results obtained for some cases of interest are

reported in Table 1. For all the cases considered, it has

been assumed c ¼ 0, d ¼ 0:8, DS ¼ 0:1 m, D ¼ 0:1 m. In

Table 2, the characteristics of the nodalisations adopted
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in the numerical code simulations for the different cases

are given. The loop flow rate transient evolution calcu-

lated using the numerical code in cases 1–6 are shown in

Figs. 2–4. Fig. 5 shows the theoretical stability map
together with the working points analysed via the nu-
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Fig. 4. Loop flow rate transient calculated via
merical code for the specific combinations used in cases

1–4.

The results reported in Table 1 reveal a reasonable

agreement between the analytical model and the nu-
merical program as far as the steady-state flow rate and
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the numerical code: case 1 and case 2.
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the numerical code: case 3 and case 4.
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the numerical code: case 5 and case 6.
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the assessment of the system stability are concerned,

even when the margin of stability or instability is rela-

tively small. The small differences in the steady-state

mass flow rate between the analytical model and the

reference program can be ascribed to the different nature

of the models (analytical and numerical) and to the

schematisation of the source and the sink with nodes

having finite length.

5.2. Comparison of the stability maps for different heat

transfer correlations

The stability map for the case with d ¼ 0:8, b ¼ 0:25,
c ¼ 0:0 is reported in Fig. 6 in comparison with the case

with d ¼ 0:0 (i.e., constant heat transfer coefficient case),

b ¼ 0:25, c ¼ 0:0. The parameter a� is reported in log-
arithmic scale along the abscissa. Looking at the rep-

resentation of the stability map in terms of a� and u�, it
appears from the example that the neutral stability line

for the case of variable heat transfer coefficient is dis-

placed in the zone of higher a� and u� values with re-

spect to the case with d ¼ 0:0 and has a different

appearance, even if it maintains the characteristic

‘‘nose’’ shape.
6. Conclusions

In the present paper, an extension of the analysis

proposed by Welander (1967) for a simple single-phase

thermosyphon loop is carried out by including more

general friction factor and heat transfer coefficient cor-

relations. A five-parameters description of the stability

of the system, that is conveniently reduced to a two-
parameters representation (namely a� and u�), is dem-

onstrated to be possible and an analytical model is
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correspondingly obtained. Such a model has been vali-

dated with results provided by a completely independent

numerical code incorporating the same friction factor

and heat transfer coefficient correlations used in the
analytical model in each of the considered cases.

The analytical model has then been used to compare

the case of heat transfer coefficient calculated according

to a Colburn-type correlation with the case of constant

heat transfer coefficient assumed in the original We-

lander’s treatment. This comparison reveals that the

neutral stability curve changes in shape and position in

the a�–u� plane. In particular, for the variable heat
transfer coefficient case, the onset of instability occurs at

higher values for a� and u�. However, it has to be

considered that for assigned physical and geometrical

conditions, a change in the form of the heat transfer

coefficient (namely of the exponent d) will involve

modifications in the values of a� and u�.
Although the presented model is quite general, the

heat transfer correlation (2), mainly used in the presence
of forced convection, is obviously not able to cover all

the cases of practical interest. As known, both friction

and heat transfer may be different in natural circulation

conditions with respect to forced flow and specific clo-

sure laws should be adopted in this case. Further de-

velopments, i.e., consideration of other forms of the heat

transfer coefficient, would therefore represent the logical

step to extend the applicability of the present work. Also
the extension to friction factor forms different from (1)

could be interesting, as already shown in Ambrosini and

Ferreri (2000).

However, in these developments a compromise must

be reached between realism and simplicity of the para-

metric representation. In fact, for practical purposes it is

important to attain simple models, anyway able to

represent the relevant features of the considered dy-
namic system. This is what made Welander’s problem so

relevant for a whole class of natural circulation loops

and motivated the extension of its range of application

proposed in the present work.
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